
NASA Technical Memorandum 4644

Shear Buckling Analysis
of a Hat-Stiffened Panel

William L. Ko and Raymond H. Jackson

Dryden Flight Research Center

Edwards, California

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1994



ABSTRACT

A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local

buckling and global buckling were analyzed. The global shear buckling load was found to be several times

higher than the local shear buckling load. The classical shear buckling theory for a fiat plate was found to

be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear

buckling loads thus obtained compare favorably with the results of finite element analysis.
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NOMENCLATURE

2

cross-sectional area of one corrugation leg, A = It c, in

cross-sectional area of global panel 2segment bounded by p,1
= A + pt s + _ (fl - f2) tc' in

Fourier coefficient of assumed trial function for w (x, y), in.

length of global panel, in.

horizontal distance between centers of corrugation and curved region,

1[ 1 1b = _ P-_(fl +f2) ' in.

width of rectangular flat plate segment, in.

width of global panel, in.
3

E st s
flexural rigidity of flat plate, D = , in-lb

12 ( 1 - v 2)
S

flexural stiffness parameter, _DxDy, in-lb

transverse shear stiffnesses in xz-, yz-planes, lb/in

effective bending stiffnesses of equivalent hat-stiffened panel, in-lb

one-half of diagonal region of corrugation leg, in.

modulus of elasticity of hat material, lb/in 2

modulus of elasticity of face sheet material, lb/in a

lower fiat region of hat stiffener, in.

upper flat region of hat stiffener, in.

shear modulus of hat material, lb/in 2

shear modulus of face sheet material, lb/in 2

distance between middle surfaces of hat top flat region and face sheet,

1 (t c + ts), in.h = hc+ _

h c distance between middle surfaces of hat upper and lower flat regions, in.
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corrugation angle (angle between the face sheet and the straight diagonal

segment of corrugation leg), rad

Poisson ratio of hat material

Poisson ratio of face sheet material

shear stress, lb/in 2

critical value at buckling

INTRODUCTION

Recently, various hot-structural panel concepts were advanced for applications to hypersonic aircraft

structural panels. Among those panels investigated, the hat-stiffened panel (fig. 1) was found to be an ex-

cellent candidate for potential application to hypersonic aircraft fuselage panels. This type of panel is

equivalent to a corrugated core sandwich panel with one face sheet removed.

Buckling behavior of the hat-stiffened panel under compressive loading in the hat-axial direction, was

investigated by Ko and Jackson recently (ref. 1). They calculated both the local and global (general panel

instability) compressive buckling loads for the panel. The calculated local compressive buckling load was

found to be far lower than the global compressive buckling load, and compared fairly well with the exper-

imental data. To fully understand buckling characteristics of the hat-stiffened panel, the shear buckling be-

havior of this panel needs to be investigated.

This report presents the local and global buckling analyses of the hat-stiffened panel subjected to shear

loading. The predicted shear buckling loads are compared with the finite element shear buckling solutions.

SHEAR BUCKLING ANALYSIS

To analyze the buckling behavior of the complex structure shown in figure 1, two approaches were

taken: (1) local buckling analysis, and (2) global buckling analysis (general panel instability). The follow-

ing sections describe these approaches.

Local Buckling

The purpose of local buckling analysis was to study the buckling behavior of a local weak region of

the panel. This weak region is identified as a rectangular fiat plate region bounded by two legs of the re-

inforcing hat located at the center of the global panel (left diagram of fig. 2). The analysis looked at the

buckling behavior of this rectangular fiat plate (slender strip). Because the reinforcing hat has high flexural

rigidity, the four edges of the rectangular plate were assumed to be simply supported (right diagram of

fig. 2). From reference 2, the shear buckling stress (Xxr)c r in the rectangular flat plate may be written as

(Xxy)c r = kxy rt2D_ (1)
b2t
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Figure 2. Shear buckling of hat-stiffened panel analyzed using a simple model.

b b °
where kxy is the shear buckling load factor, which is a function of panel aspect ratio o. For -- = 1 (a

a a
bo

square panel), kxy = 9.34 ; and for -- - 0 (an infinitely long panel), kxy = 5.35. For intermediate val-
b a

ues of o, kxy may be found from a parabolic curve-fitting equation of the form (ref. 2)a

kxy = 5.35 + 4 (2)

The curve described by equation (2) is shown on the left in figure 3. The panel shear load N )for the hat-stiffened strip (left diagram of fig. 2) may be written in terms of shear flows (fig. 4) as (ref.X_



Nxy = ql + qc (3)

where ql and qc are, respectively, the shear flows in the flat panel and the hat, and are given by (ref. 4)

ql = "_xyts = 2Gshots _2W (4)
OxOy

and

GctcP hc f )7 o2WF
Lh - 2ho - (fl -

(5)
qc - l _p 2 jO-'_-y

_2 w

where _ is the panel twist.

From equations (4) and (5), the ratio ql/qc may be calculated. Then, from equation (3), the panel

shear buckling load (Nxy) cr of the hat-stiffened strip may be calculated as a function of (Xxy) cr (eq. (1)).

Global Buckling

In the global buckling analysis (general instability analysis), the complex panel was represented by a

homogeneous anisotropic panel having effective elastic constants. These effective elastic constants must

be calculated first (ref. 3). This analysis is similar to the conventional buckling analysis of a sandwich

panel with one face sheet removed.

By using the small-deflection theory developed for flat sandwich plates (ref. 5) and solving the shear

buckling problem of the hat-stiffened plate using the Rayleigh-Ritz method of minimizing the total poten-

tial energy of a structural system (refs. 5 through 9), the following shear buckling equation is obtained:

M elo oo

m"--'-_nA + E E _mnijAij : 0
kxy mn i= 1j = 1

(6)

where

M
mn

1

32 ab(a?[ ,,D*k n) amn +

LT ,
classical thin

plate theory

12 r 23 31 21 33 x 13, 21 32 22 31.
amn kamna mn -- a mna mn) + amn [,a mnamn -- a mnamn )

22 33 23 32
amnamn -- amnamn

Y

transverse shear effect terms

(7)

_)mnO --__ mnij . m :_ i, n :_ j,
(m 2_ i2) (n 2_j2)' m_+i=odd, n+j = odd

(8)
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Figure 5. Segment of hat-stiffened flat panel.

where

1 3

I s = tsh2o + -_t s (19)

and T c is the moment of inertia, per unit width, taken with respect to the panel neutral axis 11o (fig. 5),
and is given by

[_ ] tc+ts2c A 2 1 f 2tc
Ic = --p + -p (hc + tc + ts) - h° + 2_p (fl - f2) t3c + ho 2 (20)



where the nondimensional coefficient S is defined as

h t

P tc

12{hPDF-2(P) 2 hc[ t(DFDH-D_ 2)hchc -z _ D H+--ff 6tc z y +

where the nondimensional parameters D F D H and D Hz, z, y are defined as

(29)

_(_c)3 C0S20+_ I_ (_c)3-- (_c)31

+hc 2 O- hZ(1-cosO)+
C

+_ 2 sin 20+_-(O-sin 0 cos O)
h2t c

,C C

( O- sin0 cos0) 1 (30)

2 d 3 11c [1 p 2 b)2]_(_) sinOcosO+_ (_c) -(_c

+_ O- -_-5(O-sinO)-_(1-cosO) 1- _(1-cos O)
C

I_£

h2t
¢ £

sin0cosO+ sin2o)
hc c

(31)

DH = 2 (_c) 3 1(if__ lf/c'_Y 3 sin20 + r_ c° + 2hclf/

_(_)2 I(2_3ff_)(0_sin0) +ff_sin0(l_cos0)l

d R (0 + sin0 cos 0)1+2 COS 2 0+h-'-
¢ C

(32)

where

1 1I 1 1 13 13f = _(fl +f2), b = ,_ p-72(fl+f2) , lc = _tc, If = i_ts (33)

The shear buckling equation (6) yields a set of homogeneous equations associated with different values of

m and n. This set of equations may be divided into two groups that are independent of each other: one

group in which m _+n is odd (that is, antisymmetrical buckling), and the other in which m -,-n is even (that

11



Form ± n = odd (antisymmetricai buckling):

m, n\ i" J

m=l, n=2

m=2, n=l

re=l, n=4

m=2, n=3

m=3, n=2

m=4, n=l

re=l, n=6

m=2, n=5

m=3, n=4

m=4, n=3

m=5, n=2

m=6, n=l

A12

M12

k
x)'

A21 At4 A23 A32 A4t A16 A25 A M A43 A52 A_,l

4 4 8 20 8 4

- _ 0 _ 0 - 4--5 0 6"3 0 2-5 0 35

M21 8 4 4 8 20

k 45 0 _ 0 35 0 2"-5 0 6--3 0
x)'

MI4 8 16 40 16 8

,,2"- -. z, 0 225 0 --_.""_ 0 35 0 1 75
xy

IJ

"v: 23 36 0 4 0 72 0 4 0
k 25 9 35 7

xy

M32 8 4 72 4
0 0 0

T-- -_ -_ 3_ -_
xy

M41 8 16 400 0 0
T-- 175 35 2-3

xy

M16 20 8 36

c.,_,oymme,,_ k 11 0 45 0 1225
xy

M25 8 1 O0o o
k 3 441

xy

M34 144 8
0

49 45
xy

M43 8

T-- -5 o
xy

M52 20

k 11
xy

M61

k
xy

=o

(35)

where the nonzero off-diagonal terms satisfy the conditions m :_ i, n _:j, m - i= odd, and n ± j = odd.

Notice that the diagonal terms in equations (34) and (35) came from the first term of equation (6), and

the series term of equation (6) gives the off-diagonal terms of the matrices. The 12 x 12 determinant was

found to give sufficiently accurate eigenvalue solutions.
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Figure 6. Buckling shape of hat-stiffened panel under shear loading (finite element analysis by
W. Percy, Mc-DonnelI-Douglas; full-panel model).

This local shear buckling load prediction is slightly higher than the value (N x )cr = 900 lb/in calcu-
l " Y *ated from fimte element buckling analysis carded out by W. Percy of McDonnell-Douglas. Figure 6

shows the shear buckling shape of the hat-stiffened panel based on Percy's full-panel finite element model.

Clearly, the panel is under local buckling rather than general instability. The local buckling analysis pre-

dicts a slightly higher value of (Nxy)c r because the four edges of the rectangular plate strip analyzed were
assumed to be simply supported. In reality, those four edges are elastically supported.

Global Buckling

To find the order of the determinant (review eqs. (34) and (35)) for converged eigenvalue solutions,

several different orders of the determinants were used for the calculations of k x . The eigenvalues were

found to have sufficiently converged beyond order 10. In the actual calculationsYof kx., the orders of the

determinants were taken to be 12, which were shown in equations (34) and (35). The elrgenvalue solutions

thus obtained give the following lowest values of kxy:

m+n=even: kxy = 1.89 (41)

m+n=odd: kxy = 1.93 (42)

Thus, the square panel will buckle symmetrically. Using k
xy

may be calculated from equation (lO) as
= 1.89, the panel shear buckling load ( Nxy)c r

(Nxy)cr = 4, 296 lb/in (43)

_Personal communication with author.
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